Introduction to Java Programming

Handout Lecture_5_Exercises.doc

Lecture 5 Exercises – Exploring OO Programming

Part 1 – Inheritance

Tips

1. To write a message to the command-line use System.out(“message”);
2. To invoke a super class method use the super keyword, as follows: super.superClassMethodName()
3. To invoke a super class constructor use the super keyword, as follows: super(“param”). This must be the first line of the constructor in the child class.

Exercises

1. Firstly, create and compile a simple class called Parent. Give it the following behaviour:

a. A default constructor that does nothing other than print out “Parent default constructor” using System.out
b. A single method called getMessage which returns a String, e.g. “Parent message”

2. Next, create and compile a class called Child. Give it the following behaviour

a. Do not give it a constructor

b. Override the parent’s getMessage method to return an alternative String. E.g. “Child message”

c. A main method which creates an instance of the Child object, and then writes the value returned by its getMessage method to the command line.

d. What happens when the class is run?

3. Alter the Child class to give it a default constructor which prints out “Child default constructor”. Compile and run the application again and identify what happens.

4. Alter the implementation of the getMessage method in the Child class so that it first calls the parent class method, then concatenates the result with its own value to build a combined message. E.g. returning “Parent message and Child message”.

5. Alter the Parent class by 

a. Adding a new constructor that accepts a String argument. This should be used to initialise a private member variable, myMessage. Again write a message to the console that indicates that the constructor has been called.

b. Alter the getMessage method so that it returns the value of the myMessage rather than a fixed message.

c. Now alter the Child class so that it from its default constructor it calls the new constructor on the parent class.

6. Alter the myMessage member variable in the Parent class so that it is declared to be protected. Confirm that the Child class can now refer to the variable directly, rather than having to call its parent’s version of getMessage to build the combined message. Can you think of the pros and cons of the two different mechanisms?

Part 2 – Abstract Classes and Methods

Tips

1. Your syntax reference sheet has examples of how to define abstract classes and methods

Exercises

1. Create an abstract class called AbstractParent. Give it the following two methods:

a. A public method called getMessage that accepts no parameters and returns a String. This method should call a second method, generateString that again just returns a String.

b. Define generateString so that it a protected abstract method.

2. Create a second class called SecondChild, which extends AbstractParent. 

a. Implement the generateString method defined by its parent to return a suitable String

b. Add a main method that creates an instance of SecondChild and invokes its getMessage method. Can you identify what is happening here?

L. Dodds, October 2002

1/2

