Introduction to Java Programming

Handout Lecture 2 Exercises.doc

Lecture 2 Exercises – Robocode Practical

Part 1 – Calling Methods, Simple Loops, Conditionals

Programming Tips:

· The ahead and back methods will move your robot forwards and backwards a fixed number of units.

· The turnLeft and turnRight methods will rotate your robot a specified number of degrees left and right.

· out.println(variableName) or out.println(“A message”) will write a message to your robots console.

Exercises

1. Using just the ahead and turnRight/turnLeft methods create a robot that travels in a complete square once, beginning from its starting position. Make the robot travel 150 units for each side of the square.

2. Using a for loop create a robot that travels in a complete square 10 times.

3. Adapt the code so that it uses a loop that repeats four times to control the forward movement and turns.

4. Using a while loop create a robot that travels in a square forever (or until the round ends anyway).

5. Add an integer variable, called lengthOfSquare and initialise it to the value 150. Adapt the code so that it uses this variable rather than a hard-coded value of 150.

6. Alter your robot so that it counts the number of squares it has travelled and writes this to the console.

7. Alter the above robot so that it incorporates an if statement such that it travels first clockwise and then anti-clockwise (hint: x % 2 == 0 for even numbers of x, and turnRight and turnLeft can accept negative degrees). Also have the robot print out whether it’s currently travelling clockwise or anti-clockwise.

Part 2 –Methods

Programming Tips

· Methods should be private unless you want them to be part of your objects public interface.

· Attributes of a class are defined by declaring a variable outside of any method. They can be initialised when declared, or from within a method (e.g. the run method). E.g:

private int myVariable = 0;

Exercises

1. Create a new method called moveInSquare. The method should return void, and accept a single parameter, of type int called lengthOfSide. Alter the code from exercise 1.5 above so that the statements that describe how to move in a square are now in this method. Alter the run method so this method is called to make the robot move.

2. Add a new variable in the run method of your robot . It should be of type int, and called numberOfSquares. Alter the method so that after each time the moveInSquare method has been called it increments numberOfSquares by one. Get the robot to print out how many squares it’s traveled after incrementing the variable.

3. Add another new method called doCorner. Change moveInSquare so that it calls doCorner rather than explicitly turnRight or turnLeft. Make the implementation of doCorner carry out several steps:

a. Check a new boolean attribute called clockwise that indicates whether the robot should turn clockwise or anti-clockwise.

b. Rotate the robots gun 360 degrees

4. Experiment with adding additional attributes that control your robots behaviour

a. a boolean attribute called aggressive can indicate whether the gun should fire at each corner

b. a boolean attribute called scanForRobots can control whether the robot rotates its radar at each corner

c. other attributes can control the size of the square, the number of degrees the gun and radar are turned, the direction of their turn, etc.

Part 3 – Adding More Behaviour (Event Driven Programming)

Programming Tips

· Look at the documentation for the Robocode class. There are a number of methods called onSomething, e.g. onScannedRobot. These methods will be automatically called by the Robocode simulation when particular events take place. E.g. when your robot sees another robot. This gives you chance to react to the environment to do something useful (e.g. shoot the robot). These methods are known as event handlers.

· Each method accepts an “event object” parameter (e.g. BulletHitEvent) that provides additional information about what has just happened, e.g. which robot you’ve seen, who has hit you, etc.

Exercises

1. Create a robot with an onScannedRobot method. Consult the documentation for the parameters and return types of the method. Implement the method to do something useful when it receives the event, e.g:

a) Write out the name of the robot you’ve seen, its current energy, and its distance

b) Fire on it!

2. While you can now fire on the enemy when you see them, you’re unable to tell whether your shots hit unless you implement the onHitRobot event. Implement this method to record when you successfully hit a target.

3. Experiment with implementing other event handlers. E.g. to record when another robot dies (onRobotDeath), when your robot dies (onDeath), or even do a victory dance (onWin).

L. Dodds, October 2002

1/3

