Introduction to Java Programming

Handout Lecture_7_Exercise.doc

Lecture 7 Exercises – I/O

Writing the FileFetcher application

This application will allow a user to create a text file containing a list of URLs that they would like downloaded into their home directory. This file will have one URL on each line.

The application will read the file and process each URL in turn by downloading it from the remote website and then storing it in the users home directory. The application should determine the name of the local file using the URL provided.

The application should use exception handling to ensure that problems downloading one file won’t affect the download of others

The application should also write out to the console which file it is currently downloading, and the number of bytes downloaded when a file has been successfully fetched.

The FileFetcher application will consist of two classes, shown in the UML diagram below:

[image: image1.png]FieFetcher

Oounloadhinager

ist0rFies s
manager : Dounoadhnager

[<Corates> + FiaFetoherin0ffies:) : voi|
———
|+ dounioadieie: sing) : void

[+ douniadFe(ieToDouricad: sing - g
|+ douniadFie(uttoDounioad: URL) : ong
makeFieNametut: URD - Soing

s maintor: svinan) : veia

The responsibilities of each class, and their methods are described below

DownloadManager

This class is responsible for downloading a file from a website and storing it in the users home directory.

Here’s what each method should do:

makeFileName()

This method should take its URL object parameter and use it to determine an appropriate file name for storing the file locally. It should return that file name as a String.

A simple way of doing this is to extract the file name from the URL. E.g.

http://www.ldodds.com/lectures/person.jar

becomes person.jar, as follows:

String urlAsString = url.toString();

int index = urlAsString.lastIndexOf(“/”);

String filename = urlAsString.substring(index);
See the Javadoc for the String object class for definitions of these methods

downloadFile()

These methods should actually do the work of downloading the remote file to the local file system. There are two versions of the method (i.e. its overloaded) simply to make the class more convenient to work with: the user can provide the URL as a String or a URL object.

The methods should open an input stream to the remote URL and download the contents of that stream into a new file in the file system. A FileOutputStream can be created to write out the data read from the network, the constructor of the FileOutputStream can be passed a File object.

The method should determine the name of the file by calling makeFileName(). E.g.:

String directory = makeFileName(url);

The method should determine the location in which to store that file by invoking this method:

String directory = System.getProperty(“user.home”);

…which returns a String object containing the users home directory.

Creating a File object for the new file can be achieve by calling the File object constructor that allows you to specify the directory and filename for the new file as separate arguments, e.g.:

File localFile = new File(

 directory,

 filename);

FileFetcher

This class is responsible for reading the file provided by the user containing the URLs to download. It should delegate the actual work involved in downloading each file to an instance of the DownloadManager class.

Here’s what each method should do:

main()

1. Read the name of the file the user provides from the command line

2. Construct a FileFetcher object

3. Tell it to download the files

4. Report on any exceptions thrown.

downloadFiles()

This method should:

1. Open a buffered input stream to the filename stored in its member variable,

2. Read each line in turn from the file

3. Call its downloadFile method for each URL

4. Close the stream when its finished

downloadFile()

This method should:

1. Print out the name of the file its about to download

2. Ask an instance of the DownloadManager to actually download the file

3. Print out the number of bytes retrieved if the download was successful

4. Print out an error message if the download failed by catching exceptions thrown by the DownloadManager.

L.Dodds, November 2002

3/3

